Organism and the Origins of Self pp 79-107 | Cite as
Organism: A Meshwork of Selfless Selves
Abstract
Organism connotes a knotty dialectic: a living system makes itself into a entity distinct from its environment through a process that brings forth, through that very process, a world proper to the organism.
Keywords
Cellular Automaton Emergent Property Artificial Life Binocular Rivalry Abdominal GanglionPreview
Unable to display preview. Download preview PDF.
References
- 1.Lewontin, R. (1982), The Dialectical Biologist, MIT Press, Cambridge.Google Scholar
- 2.Langton, C. (Ed.) (1989), Artificial Life, Addison-Wesley: Redwood City.Google Scholar
- 3.Maturana, H. and F. Varela (1973), De Máquinas y Seres Vivos: Una teoría de la organizatión biológica, Editorial Universitaria: Santiago de Chile.Google Scholar
- 4.Maturana, H. and F. Varela (1980), Autopoiesis and Cognition: The Realization of the Living, D. Reidel: Boston. [Boston Studies in the Philosophy of Science, vol. 42].Google Scholar
- 5.Varela, F., H. Maturana, and R. Uribe (1974), Autopoiesis: the organization of living system, its characterization and a model, BioSystems 5: 187–195.CrossRefGoogle Scholar
- 6.Fleischaker, G. (1988), Autopoiesis: System logic and the origin of life, Ph.D. Dissertation, Boston University, Boston, MA.Google Scholar
- 7.Margulis, L. (1981), Symbiosis in Cell Evolution, W. H. Freeman, San Francisco.Google Scholar
- 8.Margulis, L. and D. Sagan (1986), Origins of Sex, Yale Univ. Press, New Haven.Google Scholar
- 9.Gardner, M. (1971), On cellular automata, self-reproduction, the Garden of Eden, and the game “life”, Sci. Amer. 224: 112.CrossRefGoogle Scholar
- 10.Wolfram, S. (1986), Theory and Applications of Cellular Automata, World Scientific, Singapore.Google Scholar
- 11.Toffoli, T. (1987), Cellular Automata Machines, MIT Press, Cambridge.Google Scholar
- 12.Deamer, D. and G. Barchfeld (1982), Encapsulation of macromolecules by lipid vesicles under simulated prebiotic conditions, J. Molec. Evol. 18: 203–206.PubMedCrossRefGoogle Scholar
- 13.Lazcano, A. (1986), Prebiotic evolution and the origin of cells, Treballs Societat Catal. Biol. 39: 73–103.Google Scholar
- 14.Baeza, I. M. Ibñ nez, A. Lazcano, C. Santiago, C. Arguello, C. Wong, and J. Oró, Liposomes with polyribonucleotides as models of precellular systems, Origins of Life 17: 187–199.Google Scholar
- 15.Deamer, D.W. (1985), Role of amphillic compounds in the evolution of membrane structure on the early Earth, Origins of Life 17: 3–25.Google Scholar
- 16.Luisi, L. and F. Varela (1989), Self replicating micelles: A minimal version of a chemical autopoietic system, Origins of Life 19: 633–643.CrossRefGoogle Scholar
- 17.Varela, F. (1979), Principles of Biological Autonomy, North-Holland/ Elsevier, New York.Google Scholar
- 18.Varela, F. (1988), Structural coupling of simple cellular automata: On the origin of meaning. In: E. Secarz, F. Celada, N.A. Mitchinson, and T. Tada, The Semiotics of Cellular Communication in the Immune System, NATO ASI Series, Vol. H23, Springer-Verlag, New York, pp. 151–161.Google Scholar
- 19.Castoriadis, C. (1987), L’état du sujet aujourd’hui, Topique 38: 7–39.Google Scholar
- 20.Margulis, L. and K. Schwartz (1988), Five Kingdoms: An Illustrated Guide to the Phyla of Life on Earth, W.H. Freeman, New York.Google Scholar
- 21.Buss, L. (1987), The Evolution of Individuality, Princeton Univ. Press, Princeton.Google Scholar
- 22.Bonner, J.T. (1988), The Evolution of Complexity, Princeton Univ. Press, Princeton.Google Scholar
- 23.Varela, F., B. Dupire, and A. Coutinho, (1988), Cognitive networks: Immune, neural and otherwise. In: A. Perelson (Ed.), Theoretical Immunology, Vol. 2. (SFI Series on Complexity), Addison Wesley, New Jersey, pp. 359–375.Google Scholar
- 24.Vaz, N. and F. Varela (1978), Self and non-sense: An organism-centered approach to immunology, Medical Hypothesis 4: 231–267.CrossRefGoogle Scholar
- 25.Coutinho, A., L. Forni, D. Holmberg, F. Ivars, and N. Vaz (1984), From an antigen-centered, clonal perspective on immune responses to an organism-centered network perspective of autonomous activity in a self-referential immune system, Immunol. Revs. 79: 151–168.CrossRefGoogle Scholar
- 26.Lundqvist, I., A. Coutinho, F. Varela, and D. Holmberg (1989), Evidence for the functional dynamics in an antibody network, Proc. Natl. Acad. Sci. (USA) 86: 5074–5078.CrossRefGoogle Scholar
- 27.Varela, F.M. and A. Coutinho (1991), Second generation immune networks. Immunol. Today. In press.Google Scholar
- 28.Coutinho, A. (1989), Beyond clonal selection and network, Immunol. Revs. 110: 63–87.CrossRefGoogle Scholar
- 29.Varela, F., A. Andersson, G. Dietrich, A. Sundblad, D. Holmberg, M. Kazatchkine, and A. Coutinho, The population dynamics of natural antibodies in normal and autoimmune individuals, Proc. Natl. Acad. Sci. (U.S.A.), In Press.Google Scholar
- 30.Varela, F. and S. Frenk (1987), The organ of form: Towards a biological theory of shape, J. Soc. Biol. Struct. 10: 73–83.CrossRefGoogle Scholar
- 31.Carew, T. and C. Sahley (1983), Invertebrate learning and memory: from behavior to molecules, Ann. Rev. Neurosci. 9: 435–487.CrossRefGoogle Scholar
- 32.Zecevic, D., J. Wu, L. Cohen, J. London, H. Höpp, C. Falk (1989), Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex, J. Neurosci. 9: 3681–3689.PubMedGoogle Scholar
- 33.John, E.R., Y Tang, A. Brill, A.B. Young, and K. Ono (1986), Double-labeled metabolic maps of memory, Science 233: 1167–1175.PubMedCrossRefGoogle Scholar
- 34.Singer, W. (1977), Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system, Physiol. Rev. 57: 386–420.PubMedGoogle Scholar
- 35.Steriade, M. and M. Deschenes (1985), The thalamus as a neuronal oscillator, Brain Res. Rev. 8: 1–63.CrossRefGoogle Scholar
- 36.Varela, F. and W. Singer (1987), Neuronal dynamics in the visual cortico-thalamic pathway revealed through binocular rivalry, Exp. Brain Res. 66: 10–20.PubMedCrossRefGoogle Scholar
- 37.Horn, G. and R. Hill (1968), Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodily tilt, Nature 221: 186–188.CrossRefGoogle Scholar
- 38.Fishman, M.C. and P. Michael (1973), Integration of auditory information in the cat’s visual cortex, Vision Research 13: 1415–1419.PubMedCrossRefGoogle Scholar
- 39.Morell, F. (1972), Visual system’s view of acoustic space, Nature 238: 44–46.CrossRefGoogle Scholar
- 40.Allman, J., F. Meizen, and E. McGuiness (1985), Non-classical receptive field properties, Ann. Rev. Neuroscien. 8: 407–430.CrossRefGoogle Scholar
- 41.Abeles, M. (1984), Local Cortical Circuits, Springer Verlag, Berlin.Google Scholar
- 42.DeYoe, E. and D.C. Van Essen (1988), Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.PubMedCrossRefGoogle Scholar
- 43.Minsky, M. (1987), The Society of Mind, Simon and Schuster, New York.Google Scholar
- 44.Llinás, R. (1988), The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function, Science 242: 1654–1664.PubMedCrossRefGoogle Scholar
- 45.Gevins, A., R. Schaffer, J. Doyle, B. Cutillo, R. Tannehill, and S. Bressler (1983), Shadows of thought: shifting lateralization of human brain electrical patterns during a brief visuo-motor task, Science 220: 97–99.PubMedCrossRefGoogle Scholar
- 46.Varela, F., A. Toro, E. John, and E. Schwartz (1981), Perceptual framing and cortical alpha rhythms, Neuropsychologia 19: 675–686.PubMedCrossRefGoogle Scholar
- 47.Goodwin, B. and P. Saunders (Eds.) (1989) Theoretical Biology: Epigenetic and Evolutionary Order from Complex Systems, Edinburgh University Press, Edinburgh.Google Scholar
- 48.Farmer, J., A. Lapedes, N. Packard, and B. Wendroff (Eds.) (1986), Evolution, Games and Learning, North-Holland, Amsterdam.Google Scholar
- 49.McClelland, J. and D. Rummelhart (1986), Parallel Distributed Processing: Studies on the Microstructure of Cognition, 3 vols., MIT Press, Cambridge.Google Scholar
- 50.Wolfram, S. (1984), Cellular automata as models for complexity, Nature 311: 419–424.CrossRefGoogle Scholar
- 51.Pasteels, J. and J. Deneubourg (1987), From Individual to Collective Behavior in Social Insects, Birkhäuser, Basel.Google Scholar
- 52.Wilson, E.O. (1971), The Insect Societies, Harvard Univ. Press, Cambridge.Google Scholar
- 53.Fresnau, D. and J. Lachaud (1985), La régulation sociale sociale: donnés préliminaires sur les facteurs individuels controlant l’organisation des taches chez Neoponera apicalis, Actes Coll. Insects Sociaux 2: 185–193.Google Scholar
- 54.Deneubourg, J., S. Aron, S. Goss, J. Pasteels, and G. Duerinck (1986), Random behavior, amplification processes and number of participants: how they contribute to the foraging properties of ants. In: Farmer et al. (Eds.), Evolution, Games and Learning, North-Holland, Amsterdam.Google Scholar
- 55.Newell, A. (1980), Physical symbol systems, Cognitive Scien. 4: 135–183.CrossRefGoogle Scholar
- 56.Plyshyn, Z. (1984), Computation and Cognition: Toward a Foundation for Cognitive Science, MIT Press, Cambridge.Google Scholar
- 57.Grossberg, S. (1984), Studies of Mind and Brain, D. Reidel, Boston. [Boston Studies in the Philosophy of Science, vol. 70].Google Scholar
- 58.Smolensky, P. (1988), On the proper treatment of connectionism, Beh. Brain Sci. 11: 1–74.CrossRefGoogle Scholar
- 59.Dennett, D. (1990a), Mother nature versus the walking encyclopedia: A western drama, in: Ramsey, S., D. Rummelhart, and S. Stich (Eds.), Philosophy and Connectionist Theory, (forthcoming).Google Scholar
- 60.Dennett, DJ (1987), The Intentional Stance, MIT Press, Cambridge.Google Scholar
- 61.Thompson, E., A. Palacios, and F. Varela (1991), Ways of coloring: Comparative color vision as a case study in cognitive science, Beh. Brain Sci. In press.Google Scholar
- 62.Fisher, S. (1990), In: G. Hattinger (Ed.), Virtuelle Welten, Linz.Google Scholar
- 63.Agree, Ph. (1988), The Dynamic Structures of Everyday Life, Report No. AI-TR 1085, MIT Artificial Intelligence Lab., Cambridge.Google Scholar
- 64.Brooks, R.A. (1986), Achieving artificial intelligence through building robots, A.I. Memo 899, MIT Artificial Intelligence Laboratory, May 1986.Google Scholar
- 65.Brooks, R.A. (1987), Intelligence without representation, MIT Artificial Intelligence Report, Cambridge, MA.Google Scholar
- 66.Dennett, D. (1990b), Review of Ch. Langten (Ed.), Artificial Life, Biology Philos. In press.Google Scholar
- 67.Humphreys, N. and D. Dennett (1989), Speaking for ourselves: An assessment of multiple personality disorder, Raritan 9: 68–98.Google Scholar
- 68.Dupuy, J.-R and F. Varela (1990), Understandings of Origins. In: Varela, F. and J.R Dupuy (Eds.), Understanding Origins: Contemporary ideas on the genesis of life, mind and society, Kluwer, Boston, In press.Google Scholar
- 69.Merleau-Ponty, M. (1952), Phenomenologie de la Perception, Gallimard, Paris.Google Scholar
- 70.Heidegger, M. (1983), Die Grundbegriffe der Metaphysik, Gesamtausgabe t.29/30, Klostermann, Frankfurt.Google Scholar
- 71.Varela, F., E. Thompson, and E. Rosch (1991), The Embodied Mind: Cognitive Science and Human Experience, MIT Press, Cambridge.Google Scholar
- 72.Wittgenstein, L. (1972), Philosophical Investigations, Basil Blackwell, Oxford.Google Scholar
- 73.Lewontin, R. (1983), The organism as the subject and object of evolution, Scientia 118: 63–82.Google Scholar